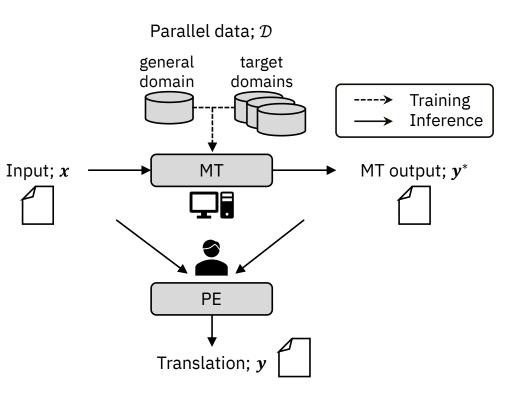
Interpretable Neural Machine Translation from Translation to Post-Editing

- ▲ NAIST (currently affiliated with NTT)
- Hiroyuki Deguchi
- 🖻 2025/06/18: AAMT
- ➡ hiroyuki.deguchi@ntt.com

Machine Translation (MT) and Post-Editing (PE)

- Typical translation process
 - MT: generates translation drafts
 - PE: refines the translations by human translators
- Various approaches of MT
 - Example-based MT (EBMT): refers to translation examples at run time (Nagao, 1984)
 - Statistical MT (SMT): learns statistical information from parallel data (Brown+, CL1990)
 - Neural MT (NMT): learns converting a sentence to its translation using neural network (Sutskever+, NIPS2014)
 - ▶ NMT has been achieved high translation quality

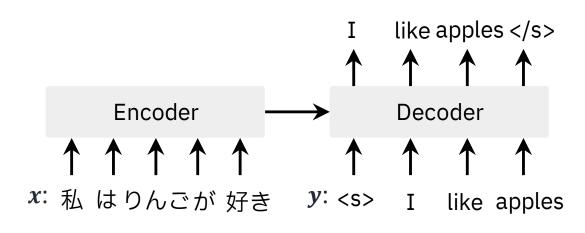
A Framework of a Mechanical Translation Between Japanese and English by Analogy Principle (Nagao, 1984) A Statistical Approach to Machine Translation (Brown+, CL1990) Sequence to Sequence Learning with Neural Networks (Sutskever+, NIPS2014)



Overview of Neural Machine Translation (NMT)

- Typical NMT employs the encoderdecoder model
 - Encoder projects the input tokens $x = (x_1, ..., x_{|x|})$ into its hidden vectors
 - Decoder generates the target tokens $y = (y_1, ..., y_{|y|})$ from left to right, autoregressively
 - Each target token is generated according to its output probabilities: $p(y_t | y_{< t}, x)$
- Neural networks used for NMT models
 - Recurrent neural network (Sutskever+, NIPS2014)
 - Convolutional neural network (Gehring+, ICML2017)
 - Transformer (Vaswani+, NIPS2017)

Sequence to Sequence Learning with Neural Networks (Sutskever+, NIPS2014) Convolutional Sequence to Sequence Learning (Gehring+, ICML2017) Attention Is All You Need (Vaswani+, NIPS2017)



Large language models (LLM) encodes the input tokens through the prefix of decoder inputs instead of using the encoder.

NMT generates fluent translations; however:

- NMT sometimes make errors, especially in the out-of-domains.
 - ▶ e.g., train: web corpus, test: medical text
- Post-editing (PE) is still crucial in fields where mistakes cannot be allowed like medical domain.

Tasks

- 1. Adapt NMT trained from general corpora to various domains efficiently
- 2. Assist post-editing to reduce the workload of human post-editors

Subset Retrieval Nearest Neighbor Machine Translation

Accepted at ACL2023 (main)

Background | In-domain and Out-of-domain

- In-domain: Training data and test data are same domain
 - Various methods have improved translation performance

e.g.,

- ► Use syntactic information (Eriguchi+, ACL2017; Deguchi+, RANLP2019)
- ► Rerank the translation candidates (Lee+, ACL2021; Fernandes+, NAACL2022)
- ► Employ the curriculum learning approaches (Bengio+, NIPS2015)

• Out-of-domain: Training data and test data are different domain

- Domain adaptation is a challenge in machine translation
 - ► -2021: The Workshop on Machine Translation (WMT), an international competition for machine translation, held the news translation task.
 - ▶ 2022—present: The task was replaced with the mixed-domain translation task.

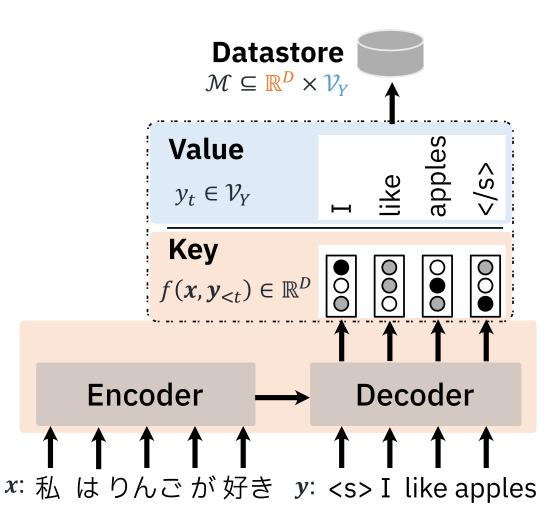
Learning to Parse and Translate Improves Neural Machine Translation (Eriguchi+, ACL2017) Dependency-Based Self-Attention for Transformer NMT (Deguchi+, RANLP2018) Discriminative Reranking for Neural Machine Translation (Lee+, ACL2021) Quality-aware Decoding for Neural Machine Translation (Fernandes+, NAACL2022) Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks (Bengio+, NIPS2015)

- Train NMT using domain data
 - It needs additional training costs for each domain.
- **Retrieve translation examples** (Zhang+, NAACL2018; Gu+, AAAI2018; Khandelwal+, ICLR2021)
 - Incorporate the example-based approach into NMT
 - No need to update models for each domain.
 - ► *k*NN-MT (Khandelwal+, ICLR2021) achieved SOTA performance in the domain adaptation task.

Guiding Neural Machine Translation with Retrieved Translation Pieces (Zhang+, NAACL2018) Search Engine Guided Neural Machine Translation (Gu+, AAAI2018) Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021)

kNN-MT (Khandelwal+, ICLR2021) : Datastore Construction

- Datastore; $\mathcal{M} \subseteq \mathbb{R}^D \times \mathcal{V}_Y$
 - Key $\in \mathbb{R}^{D}$: *D*-dimensional intermediate representation of a target token
 - Teacher-forcing a parallel sentence pair (x, y) to a trained NMT model
 - Intermediate representation of the final decoder layer
 - Value $\in \mathcal{V}_Y$: Ground truth target token
 - ▶ \mathcal{V}_Y : Vocabulary of the target language Y
- Datastore size; $|\mathcal{M}|$
 - The number of all target tokens in a parallel text
 - e.g., WMT'19 De-En: 29.5M sent., 862.6M tok.
 - ► 32bit x 1024-D x 1B tokens ≈ 3.7 TiB



- First, the model retrieves k nearest neighbor tokens from the datastore in each timestep.
- Then, kNN probability is computed applying softmax to the distance between query and key vectors.

$$p_{kNN}(y_t | \boldsymbol{x}, \boldsymbol{y}_{< t}) \propto \sum_{i=1}^{k} \mathbb{1}_{y_t = v_i} \exp \frac{-\|\boldsymbol{k}_i - f(\boldsymbol{x}, \boldsymbol{y}_{< t})\|_2^2}{\tau}$$
$$kNN \in \{(\boldsymbol{k}_i \in \mathbb{R}^D, v_i \in \mathcal{V}_Y)\}_{i=1}^k \quad \text{Applying softmax to the similarity}$$

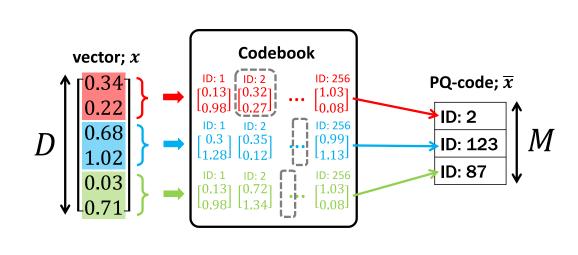
Finally, *k*NN probability and NMT probability are linearly interpolated. $P(y_t | \mathbf{x}, \mathbf{y}_{< t}) = \lambda p_{kNN}(y_t | \mathbf{x}, \mathbf{y}_{< t}) + (1 - \lambda) p_{MT}(y_t | \mathbf{x}, \mathbf{y}_{< t})$

Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021)

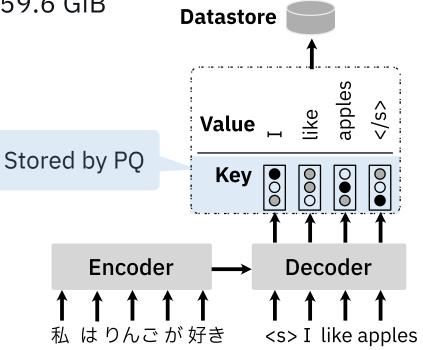
Product Quantization (PQ) (Jégou+, 2011)

Compress key vectors using a vector quantization approach

- Datastore size: 32-bit × 1024-dim × 1e+9 tokens ≈ 3.7 TiB
- PQ: Split a *D*-dim vector into *M* sub-vectors and quantize in each sub-space
 - It can achieve lower approximation error than direct *D*-dim VQ
 - 8-bit (uint8) × 64 (if M = 64) × 1e+9 tokens \approx 59.6 GiB



Product Quantization: Memory efficient



Product Quantization for Nearest Neighbor Search (Jégou+, 2011)

Preliminary Experiments: *k*NN-MT on Medical Domain (De-En) 11

Model	↑ BLEU	↑ tok/s		
Base MT	42.1	4392.1		
kNN-MT	48.2 (+6.1)	19.8 (×1/222)		

improves 6.1 BLEU w/o additional training
 222 times slower than Base MT

Prior work

- Group n-grams and retrieve them at a time (4x faster) (Martins+, EMNLP2022)
- Search for each source token and map to its corresponding target token using word alignment (10x faster) (Meng+, ACL Findings2022)
 - It is still 5% of speed of the base MT.

Parameter		Value
Data	Test set	2,000 sentences
	Datastore	Various domain corpora 31M sentence pairs 896M tokens
Model	Base MT	Transformer big trained on WMT'19 De-En
	Interpolation	$\lambda = 0.5$
	Top-k	k = 16
Evaluation	Quality	↑sacreBLEU (%)
	Speed	↑Tokens per second (tok/s)

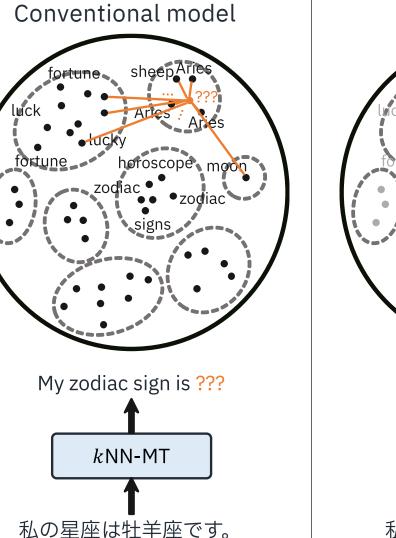
Chunk-based Nearest Neighbor Machine Translation (Martins+, EMNLP2022) Fast Nearest Neighbor Machine Translation (Meng+, ACL Findings2022)

Research Objective

We aim to improve the decoding speed of kNN-MT

Proposed model: Subset kNN-MT

- Reduce the kNN search space by searching for the neighbor sentences of the input sentence
- Use a distance look-up table for efficient distance computation
 - Existing billion-scale kNN search algorithms are designed for only full set search. (Matsui+, ACMMM2018)
 - Subset kNN-MT employs the distance computation method which can used for subset search.



Our model My zodiac sign is ??? Subset kNN-MT 私の星座は牡羊座です。

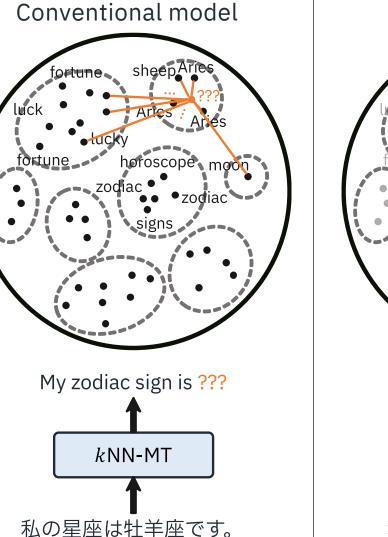
Reconfigurable Inverted Index (Matsui+, ACMMM2018)

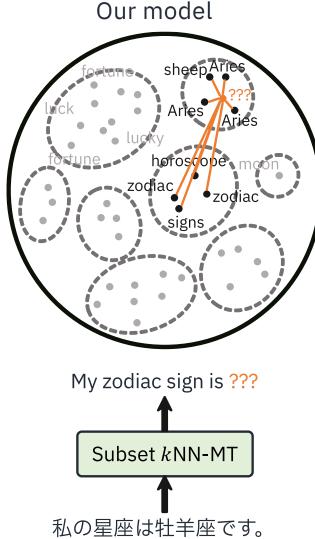
Research Objective

We aim to improve the decoding speed of kNN-MT

Proposed model: Subset kNN-MT

- Reduce the kNN search space by searching for the neighbor sentences of the input sentence
- Use a distance look-up table for efficient distance computation
 - Existing billion-scale kNN search algorithms are designed for only full set search. (Matsui+, ACMMM2018)
 - Subset kNN-MT employs the distance computation method which can used for subset search.



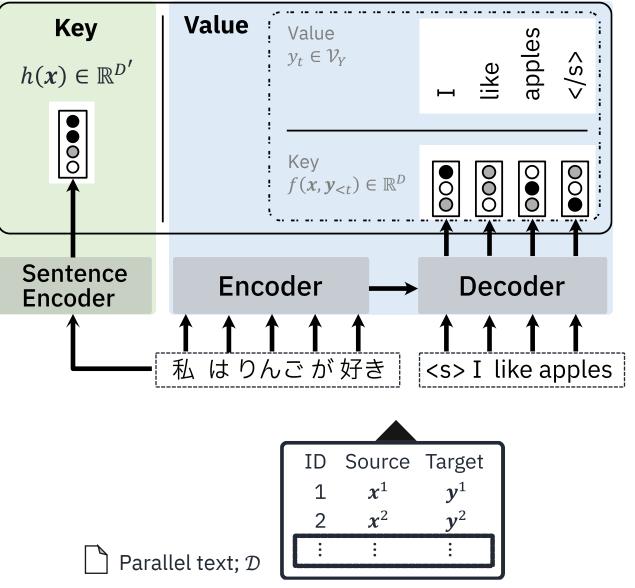


Reconfigurable Inverted Index (Matsui+, ACMMM2018)

Sentence Datastore Construction

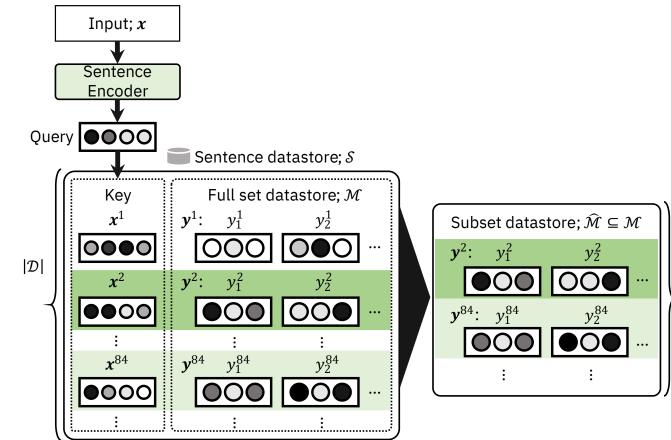
- The sentence datastore S links source sentence vectors to its corresponding target tokens from the kNN-MT datastore M.
- Key $\in \mathbb{R}^{D'}$: D'-dimensional vector of the source sentence
- Value: target tokens and their key—value pairs from the datastore *M*.

Sentence Datastore; S



Generation

- 1. Retrieve the n-nearest-neighbor sentences of the input sentence x from the sentence datastore S
 - The retrieved target token representations $\widehat{\mathcal{M}}$ are a subset of the datastore \mathcal{M} .
- 2. Use the subset datastore $\widehat{\mathcal{M}}$ at each timestep using kNN-MT



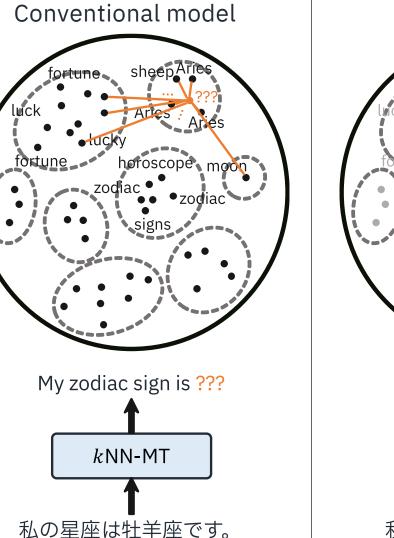
⊢n

Research Objective

We aim to improve the decoding speed of kNN-MT

Proposed model: Subset kNN-MT

- Reduce the kNN search space by searching for the neighbor sentences of the input sentence
- Use a distance look-up table for efficient distance computation
 - Existing billion-scale kNN search algorithms are designed for only full set search. (Matsui+, ACMMM2018)
 - Subset kNN-MT employs the distance computation method which can used for subset search.



Our model My zodiac sign is ???

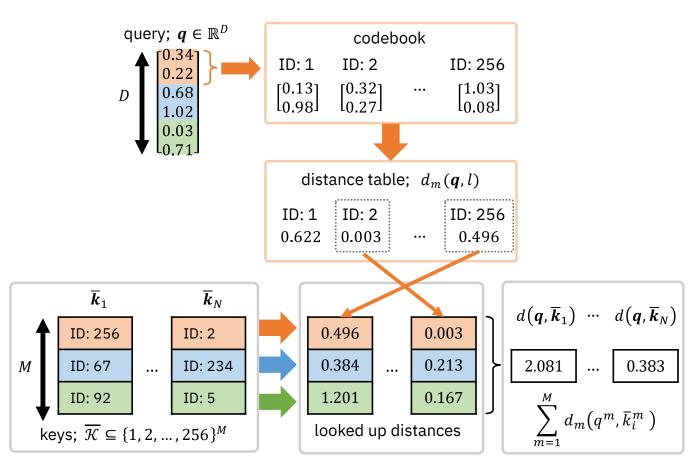
Subset kNN-MT

私の星座は牡羊座です。

Reconfigurable Inverted Index (Matsui+, ACMMM2018)

Asymmetric Distance Computation (ADC) (Jégou+, 2011)

- Compute distances between a query and each code vector in the codebook
- 2. Look up distances of each quantized key vectors from the pre-computed distance table
- 3. Calculate the sum of distances per subspace



Experiments: Domain Adaptation De-En

Parameter		Value			
Data	General domain	WMT'19 De-En: 29M			
	Target domains	 IT: 185K Koran: 15K Law: 451K Medical: 210K Subtitles: 443K 			
	Test set	2,000 sentences for each domain			
	Datastore	31M sentence pairs 896M tokens			
Model	Weight for p_{kNN}	$\lambda = 0.5$			
	Top-k	k = 16			
	neighboring sentences	<i>n</i> = 256			

Results: Domain Adaptation in De-En

	IT		Koran		Law		Medical		Subtitles	
Model	BLEU	tok/s	BLEU	tok/s	BLEU	tok/s	BLEU	tok/s	BLEU	tok/s
Base MT	38.7	4433.2	17.1	5295.0	46.1	4294.0	42.1	4392.1	29.4	6310.5
kNN-MT	41.0	22.3	19.5	19.3	52.6	18.6	48.2	19.8	29.6	30.3
Subset kNN	Subset kNN-MT									
h: LaBSE	41.9	2362.2	20.1	2551.3	53.6	2258.0	49.8	2328.3	29.9	3058.4
h: AvgEnc	41.9	2197.8	19.9	2318.4	53.2	1878.8	49.2	2059.9	30.0	3113.0
h: TF-IDF	40.0	2289.0	19.3	2489.5	51.4	2264.3	47.5	2326.6	29.3	2574.4
<i>h</i> : BM25	40.0	1582.4	19.1	2089.5	50.8	1946.3	47.4	1835.6	29.4	1567.7

Compared with kNN-MT,

- Speed: Roughly 100 times faster (up to 132.2 times)
- Quality: Improved about 1 BLEU% on all domains (up to 1.6%)
 - ▶ The noise was reduced by limiting the search space to the neighboring sentences.

Summary

Subset *k*NN-MT improved the decoding speed of *k*NN-MT

Proposed methods

- Online datastore reduction using similar sentence search
- Efficient distance computation using a distance look-up table
- From the experiments, subset *k*NN-MT achieved
 - a speed-up of up to 132.2 times
 - an improvement in BLEU of up to 1.6% compared with *k*NN-MT.
- Future work
 - Apply our method to other generation tasks like text summarization.

Detector-Corrector: Edit-Based Automatic Post-Editing Model for Human Post-Editing

Accepted at EAMT2024

NMT generates fluent translations; however:

- NMT sometimes make errors, especially in the out-of-domains.
 - ▶ e.g., train: web corpus, test: medical text
- Post-editing (PE) is still crucial in fields where mistakes cannot be allowed like medical domain.

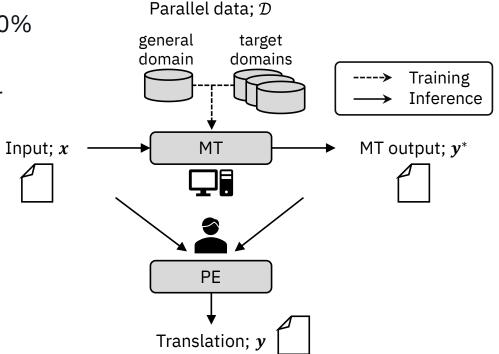
Tasks

- 1. Adapt NMT trained from general corpora to various domains efficiently
- 2. Assist post-editing to reduce the workload of human post-editors

Task 2: Reduce the workload of human post-editors

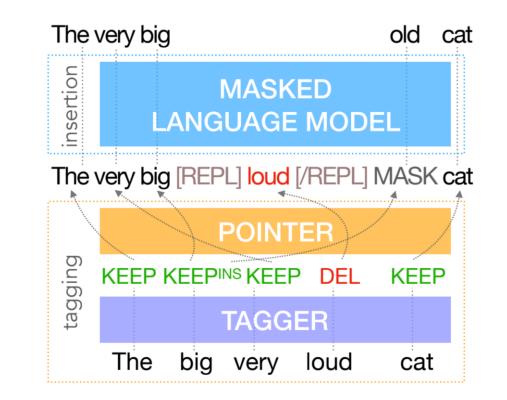
- Professional translators:
 - "Even using the latest NMT, PE has saved only about 20-30% of the working time compared to translating from scratch."
 - They take time to read the source and MT texts and look for mistranslations and omissions.
- How can we reduce the working time of PE?
 - Detect and present erroneous spans
 - Detect and present omitted spans in a source sentence

etc.



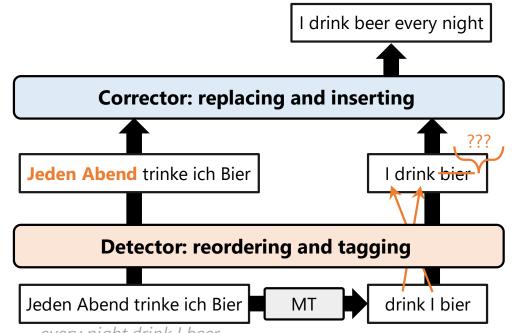
Edit model for monolingual text generation tasks

- The model predicts edit operation tags instead of output words
 - This model improved human interpretability by showing the editing process.
- FELIX is not designed for post-editing
 - It cannot predict untranslated word spans.
 - It cannot insert long spans.



Improve post-editing efficiency using edit-based approach

- Detector
 - Predict edit operations
 - ► annotate erroneous spans
 - ▶ reorder MT tokens
- Corrector
 - Correct words within erroneous spans



every night drink I beer

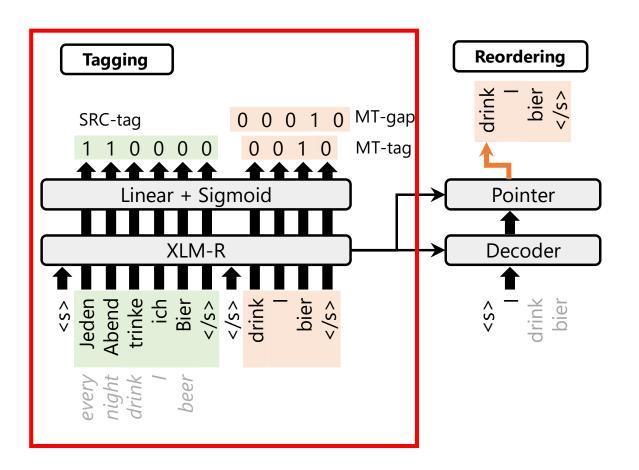
Translation Edit Rate (TER)

- Evaluation metric of translation quality
- Number of edits required to transform an MT sentence to the reference translation
- How to calculate TER
 - 1. Shift: Reorder the MT sentence to minimize the edit distance from the reference
 - 2. Edit: Compute the edit distance between the shifted MT sentence and reference
 - ► This algorithm can be regarded as representing the edit operations of PE.

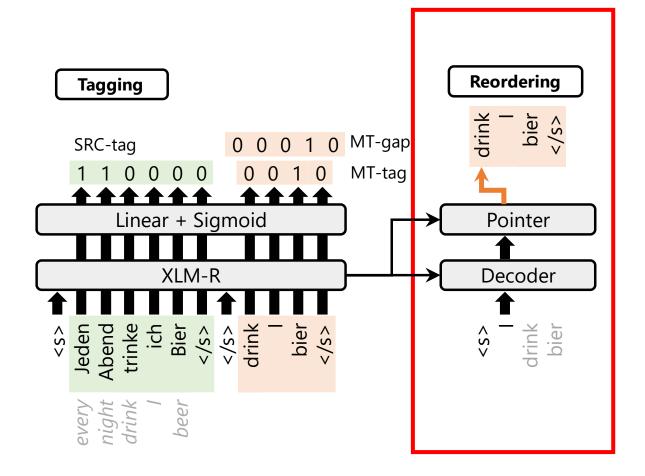
Detector: Tagging

- Three types of tags are predicted by binary classification
- MT-tag: which tokens are errors
 - The gold tags are created from TER edits: deletion and replacement
- MT-gap: the word boundaries where the words are inserted.
 - The gold tags are created from TER edits: insertion
- SRC-tag: which tokens are untranslated
 - The gold tags are created from word

Word Alignment by Fine-tuning Embeddings on Parallel Corpora (Dou and Neubig, EACL 2021)



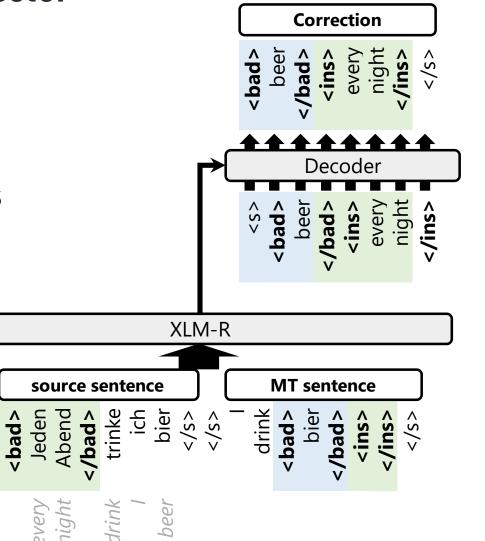
- The pointer network stacked on the decoder selects the next token from the MT sentence
- The gold order is obtained from TER shift alignment



Corrector: Predict Words within Erroneous Spans

Correct the erroneous spans by seq2seq corrector

- Encoder receives the annotated MT sentence
 - bad span: <bad> A B </bad>
 - insertion span: <ins> </ins>
- Decoder generates words within tagged spans



∧ S ∨

Experimental Setup

- Evaluation data: WMT'20 Automatic Post Editing in En-De and En-Zh
- Training data (2,140,000 sentences)
 - WMT'20 APE: 7K sentences (x 20 up-sampling)
 - Additional data: 2M sentences
 - Created from the training data of the WMT'20 news translation tasks
 - We created triplets from the parallel data by generating MT sentences using the NMT model which is used for creating official training data in the WMT'20 APE tasks

Baseline models

- Do nothing (MT): The outputs of the MT model
- Seq2seq: Black-box Transformer model
- LevT (Gu+, NeurIPS 2019) : Baseline model for the edit-based model

Setting	Seq2Seq	Detector	Corrector
Architecture	XLM-R (large) + 6L Transformer Decoder	XLM-R (large) + 4L Transformer Decoder	XLM-R (large) + 6L Transformer Decoder
Learning rate	1e-4	3e-5	1e-4
Dropout	0.1	0.1	0.1
Optimizer	Adam $(\beta_1 = 0.9, \beta_2 = 0.98)$	Adam $(\beta_1 = 0.9, \beta_2 = 0.98)$	Adam $(\beta_1 = 0.9, \beta_2 = 0.98)$
Batch size	24,000 tokens	6,000 tokens	24,000 tokens
LR scheduler	inverse square root	inverse square root	inverse square root
Warmup steps	4,000	4,000	4,000
Training steps	60,000	40,000	60,000

		En-De		En-Zh			
Model	↓ TER	↑ BLEU	↑ COMET	↓ TER	↑ BLEU	↑ COMET	
do nothing (MT)	31.3	50.2	77.1	58.3	24.3	86.3	
Seq2Seq	28.4	53.3	77.7	56.7	26.0	89.4	
LevT (Gu+, NeurIPS2019)	31.9	49.4	75.6	59.3	23.6	86.0	
Detector-Corrector	27.7	53.6	79.6	56.0	26.1	89.2	

Detector-Corrector achieved the best TER scores in both En-De and En-Zh.

Case Study

Source		Georgia Lee , 89 , Australian jazz and blues singer .				
MT		89岁的佐治亚州李, 澳大利亚 爵士乐和布鲁斯歌手.				
Seq2Seq PE		佐治亚·李(George Lee), 89 岁, 澳大利亚 爵士乐 和 布鲁斯 歌手。				
Reference		乔治亚·李(Georgia Lee), 89 岁, 澳大利亚 爵士 和 蓝调 歌手。				
	Reordered	的 佐治亚州 李 89 岁, 澳大利亚 爵士乐 和 布鲁斯 歌手.				
	Detector	的 佐治亚州 李 [INS] 89 岁, 澳大利亚 爵士乐 和 布鲁斯 歌手.				
PE (1 st)	Corrector	∅•,∅蓝调。				
Sysout		佐治亚·李,89岁,澳大利亚 爵士 和 蓝调 歌手。				
	Detector	佐治亚·李[INS], 89岁, 澳大利亚 爵士 和 蓝调 歌手。				
PE (2 nd) Corrector Sysout		(George Lee)				
		佐治亚 · 李(George Lee), 89 岁 , 澳大利亚 爵士 和 蓝调 歌手 。				

- Our detector-corrector presents the edit process
- The first PE corrected the translation a lot, while the second PE made minor corrections

Summary

Detector-corrector provides the editing process in post-editing

- For human post-editors, detector-corrector explains:
 - mistranslation spans
 - omitted spans

etc.

Future work

• Human evaluation: Which is easier to post-edit, the MT outputs or our model outputs?

Conclusion

- 1. Adapt NMT trained from general corpora to various domains efficiently
 - Subset *k*NN-MT improved translation quality for domain adaptation tasks with faster translation speed compared to the original *k*NN-MT.
- 2. Reduce the workload of human post-editors
 - Detector-corrector presented erroneous spans and untranslated spans, which are needed by post-editors, without degradation of translation quality compared to the black-box seq2seq model.

Performance of error detection of detector--corrector is not enough

- Especially, the MCC and F1-BAD scores in the target side tagging are about 50%
- We would like to investigate more effective methods of pseudo-data creation
 - ► In this dissertation, we found that the data augmentation significantly improves the detection performance.
- The error correction might be improved by other approaches
 - To make the model more robust, we should try to train an end-to-end detectorcorrector model, where the detector and corrector are connected as a single model.

- Introduce proposed methods to actual translation scene
 - Evaluate how much the workload of human translators is reduced
- Apply proposed methods to large language models
 - Subset *k*NN-MT: It is necessary to create a sentence datastore from monolingual data.
 - Detector-Corrector: It is necessary to represent tagging and reordering using generation models.
 - ► These could be realized by using constrained decoding.

Appendices

Source	Eine gemeinsame Anwendung von Nifedipin und Rifampicin ist daher kontraindiziert.
Reference	Co-administration of nifedipine with rifampicin is therefore contra-indicated.
Base MT	A joint use of nifedipine and rifampicin is therefore contraindicated.
kNN-MT	A joint use of nifedipine and rifampicin is therefore contraindicated.
Subset <i>k</i> NN-MT (<i>s</i> : LaBSE)	Co-administration of nifedipine and rifampicin is therefore contraindicated.

■ Subset *k*NN-MT generated the medical terminology "Co-administration".

Input	Eine gemeinsame Anwendung von Nifedipin und Rifampicin ist daher kontraindiziert.
Src-1	Die gemeinsame Anwendung von Ciprofloxacin und Tizanidin ist kontraindiziert.
Src-2	Rifampicin und Nilotinib sollten nicht gleichzeitig angewendet werden.
Src-3	Die gleichzeitige Anwendung von Ribavirin und Didanosin wird nicht empfohlen.
Tgt-1	Co-administration of ciprofloxacin and tizanidine is contra-indicated.
Tgt-2	Rifampicin and nilotinib should not be used concomitantly.
Tgt-3	Co-administration of ribavirin and didanosine is not recommended.

- *"Co-administration"* is included in the subset.
 - The noise was reduced by limiting the search space to the neighboring sentences.

Setup

- Subset size: n = 512
- Batch size: 1 sentence (B1) / 12,000 tokens (B∞)
- Sentence encoder; *s*
 - ► LaBSE (Feng+, ACL2022) : Pretrained multilingual sentence encoder model
 - AvgEnc: Average pooled NMT encoder hidden vectors
 - ► TF-IDF/BM25 weighted vectors

Results

- Speed: More than 100 times faster than kNN-MT
- Quality: Only -0.2 to 0.0 BLEU% degradation

Language-agnostic BERT Sentence Embedding (Feng+, ACL2022) Chunk-Based Nearest Neighbor Machine Translation (Martins+, EMNLP2022) Fast Nearest Neighbor Machine Translation (Meng+, Findings of ACL2022)

		↑tok/s				
Model	↑ BLEU	B1	B∞			
Base MT	39.2	129.14	6375.2			
kNN-MT	40.1	2.5	19.6			
Chunk <i>k</i> NN-MT (Martins+, 2022)	39.5	22.3	74.6			
Fast <i>k</i> NN-MT (Meng+, 2022)	40.3	28.1	286.9			
Subset kNN-MT (ours)						
s: LaBSE	40.1	118.4	2191.4			
s: AvgEnc	39.9	97.3	1816.8			
s: TF-IDF	40.0	113.0	2199.1			
s: BM25	40.0	108.4	1903.9			

Motivation: Improving the tagging accuracy will lead to improved translation quality because the detector-corrector is trained to correct only erroneous spans detected by the detector.

• Create synthetic data from target sentences of the parallel data

Example:

TargetI really like books

Motivation: Improving the tagging accuracy will lead to improved translation quality because the detector-corrector is trained to correct only erroneous spans detected by the detector.

• Create synthetic data from target sentences of the parallel data

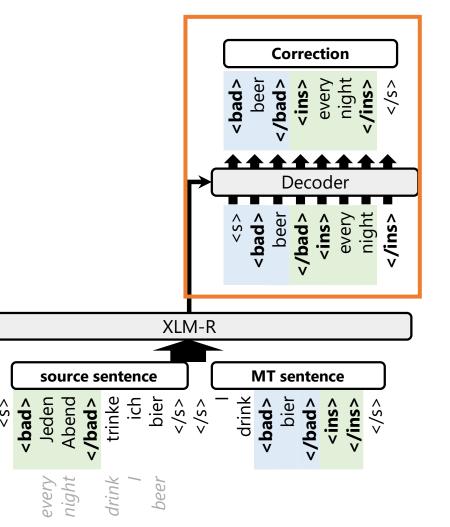
Example:



Data Augmentation for Corrector

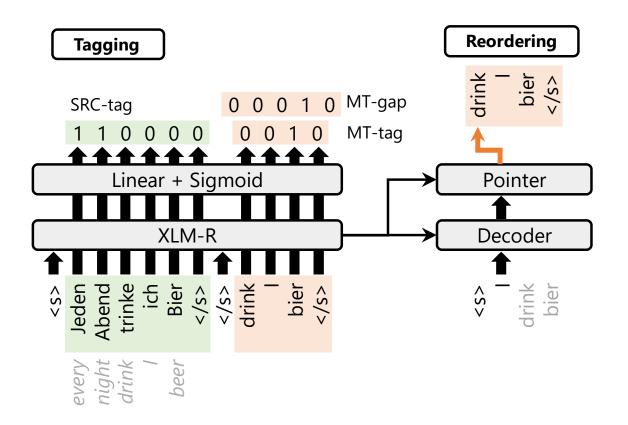
Motivation: The performance of the corrector might suffer from the limited coverage of the vocabulary in the training data when compared with a seq2seq model.

- MT training: SRC + <ins> </ins> \rightarrow <ins> TGT </ins>
- PE training: SRC + <bad> MT </bad> → <bad> TGT </bad>



Iterative refinement

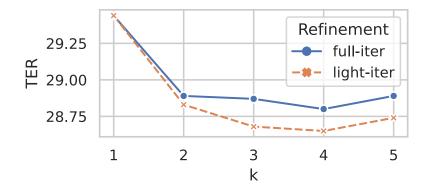
- It further corrects the corrected sentence, iteratively.
- Lightweight iterative refinement
 Motivation: Detector performs tagging nonautoregressively, so a single inference may not generate a consistent correction.
 - full-iter: Tagging + Reordering → Correcting
 - light-iter: Tagging \rightarrow Correcting
 - Reordering is only performed in the first iteration.

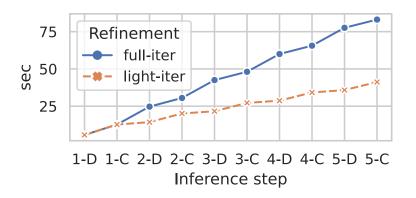


Results of Iterative Refinement

TER scores of iterative refinement

- The second inference (k=2) significantly improved TER scores from the first inference (k=1).
- Inference times of full-iter and light-iter
 - Light-iter infers faster than full-iter without performance degradation.





Word-level Quality Estimation Performance of Detector

	Target			Source		
Model	MCC	F1-OK	F1-BAD	MCC	F1-OK	F1-BAD
Detector (w/o synthetic data)	0.453	0.935	0.510	0.781	0.985	0.793
Detector (w/ synthetic data)	0.470	0.938	0.522	0.789	0.985	0.802

- Word-level QE performance of the detector can be improved by using the synthetic data
- The main results and this results show that using a detector with more accurate QE performance improves the correction performance.

Main Results: WMT'20 APE task

		En-De			En-Zh	
Model	↓ TER	↑ BLEU	↑ COMET	↓ TER	↑ BLEU	↑ COMET
do nothing (MT)	31.3	50.2	77.1	58.3	24.3	86.3
Seq2Seq	28.4	53.3	77.7	56.7	26.0	89.4
LevT (Gu+, NeurIPS2019)	31.9	49.4	75.6	59.3	23.6	86.0
Detector-Corrector	27.7	53.6	79.6	56.0	26.1	89.2
- light-iter	28.9	52.1	77.7	56.6	25.5	88.0
DAug for corrector	30.2	50.1	77.6	57.0	24.9	88.6
DAug for detector	31.2	49.0	77.1	61.2	22.7	86.7

- Detector-Corrector achieved the best TER scores in both En-De and En-Zh.
- Lightweight iterative refinement and two data augmentation approaches (DAug) are effective.

Experiment

- Evaluate the correction performance of the corrector when given oracle edit tags
 - Upper bound of the corrector performance
- The oracle edit calculated from TER between the MT sentence and reference

Result

- Given the oracle tags, the correction performance improved by -17.89% for TER and by +26.01% for BLEU.
- The corrector has been successfully trained.
- A further improvement in post-editing performance can be achieved by improving the detector model.

Model	↓ TER	↑ BLEU
Baseline (MT)	31.33	50.21
Detector-Corrector	31.75	48.68
+ Oracle tagging	13.86 (-17.89)	74.49 (+26.01)