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Machine Translation (MT) and Post-Editing (PE) 2

◼ Typical translation process

⚫ MT: generates translation drafts

⚫ PE: refines the translations by human translators

◼ Various approaches of MT

⚫ Example-based MT (EBMT): refers to translation 

examples at run time (Nagao, 1984)

⚫ Statistical MT (SMT): learns statistical information 

from parallel data (Brown+, CL1990)

⚫ Neural MT (NMT): learns converting a sentence to 

its translation using neural network (Sutskever+, 

NIPS2014)

▶ NMT has been achieved high translation quality

                      

                

  

              

        
         

        
      

      
       

A Framework of a Mechanical Translation Between Japanese and English by Analogy Principle (Nagao, 1984)

A Statistical Approach to Machine Translation (Brown+, CL1990)

Sequence to Sequence  Learning with Neural Networks (Sutskever+, NIPS2014)



Overview of Neural Machine Translation (NMT) 3

◼ Typical NMT employs  the encoder-

decoder model

⚫ Encoder projects the input tokens 𝒙 =

𝑥1, … , 𝑥 𝒙  into its hidden vectors

⚫ Decoder generates the target tokens 𝒚 =

𝑦1, … , 𝑦 𝒚  from left to right, autoregressively

⚫ Each target token is generated according to its 

output probabilities: 𝑝 𝑦𝑡 𝒚<𝑡 , 𝒙

◼ Neural networks used for NMT models

⚫ Recurrent neural network (Sutskever+, NIPS2014)

⚫ Convolutional neural network (Gehring+, ICML2017)

⚫ Transformer (Vaswani+, NIPS2017)

              

                      

               

𝒙: 𝒚:

Sequence to Sequence  Learning with Neural Networks (Sutskever+, NIPS2014)

Convolutional Sequence to Sequence Learning (Gehring+, ICML2017)

Attention Is All You Need (Vaswani+, NIPS2017)

Large language models (LLM) encodes the 
input tokens through the prefix of decoder 

inputs instead of using the encoder.



Challenges in Neural Machine Translation 4

◼ NMT generates fluent translations; however:

⚫ NMT sometimes make errors, especially in the out-of-domains.

▶ e.g., train: web corpus, test: medical text

⚫ Post-editing (PE) is still crucial in fields where mistakes cannot be allowed 

like medical domain.

◼ Tasks

1. Adapt NMT trained from general corpora to various domains efficiently

2. Assist post-editing to reduce the workload of human post-editors



Subset Retrieval Nearest Neighbor 
Machine Translation

Accepted at ACL2023 (main)



Background | In-domain and Out-of-domain 6

◼ In-domain: Training data and test data are same domain

⚫ Various methods have improved translation performance

e.g.,

▶ Use syntactic information (Eriguchi+, ACL2017; Deguchi+, RANLP2019)

▶ Rerank the translation candidates (Lee+, ACL2021; Fernandes+, NAACL2022)

▶ Employ the curriculum learning approaches (Bengio+, NIPS2015)

◼ Out-of-domain: Training data and test data are different domain

⚫ Domain adaptation is a challenge in machine translation

▶ —2021: The Workshop on Machine Translation (WMT), an international competition for machine 

translation, held the news translation task.

▶ 2022—present: The task was replaced with the mixed-domain translation task.

Learning to Parse and Translate Improves Neural Machine Translation (Eriguchi+, ACL2017)

Dependency-Based Self-Attention for Transformer NMT (Deguchi+, RANLP2018)

Discriminative Reranking for Neural Machine Translation (Lee+, ACL2021)

Quality-aware Decoding for Neural Machine Translation (Fernandes+, NAACL2022)

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks (Bengio+, NIPS2015)



Previous Work | Domain Adaptation 7

◼ Train NMT using domain data

⚫ It needs additional training costs for each domain.

◼ Retrieve translation examples (Zhang+, NAACL2018; Gu+, AAAI2018; Khandelwal+, ICLR2021)

⚫ Incorporate the example-based approach into NMT

⚫ No need to update models for each domain.

▶ 𝑘NN-MT (Khandelwal+, ICLR2021) achieved SOTA performance in the domain adaptation task.

Guiding Neural Machine Translation with Retrieved Translation Pieces (Zhang+, NAACL2018)

Search Engine Guided Neural Machine Translation (Gu+, AAAI2018)

Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021)



𝒌NN-MT (Khandelwal+, ICLR2021) : Datastore Construction 8

◼ Datastore; ℳ ⊆ ℝ𝐷 × 𝒱𝑌
⚫ Key ∈ ℝ𝐷: 𝐷-dimensional intermediate 

representation of a target token

▶ Teacher-forcing a parallel sentence pair 𝒙, 𝒚  

to a trained NMT model

▶ Intermediate representation of the final 

decoder layer

⚫ Value ∈ 𝒱𝑌: Ground truth target token

▶ 𝒱𝑌: Vocabulary of the target language 𝑌

◼ Datastore size; |ℳ|

⚫ The number of all target tokens in a parallel text

⚫  . ., W  ’19   -En: 29.5M sent., 862.6M tok.

▶ 32bit x 1024-D x 1B tokens ≈ 3.7 TiB

Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021)

𝑓 𝒙, 𝒚<𝑡 ∈ ℝ𝐷 

𝑦𝑡 ∈ 𝒱𝑌

ℳ ⊆ ℝ𝐷 × 𝒱𝑌

𝒙: 𝒚:



𝒌NN-MT (Khandelwal+, ICLR2021) : Generation 9

𝑘NN ∈ 𝒌𝑖 ∈ ℝ𝐷 , 𝑣𝑖 ∈ 𝒱𝑌 𝑖=1
𝑘 Applying softmax to the similarity

Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021)

◼ First, the model retrieves 𝑘 nearest neighbor tokens from the 

datastore in each timestep.

◼ Then, 𝑘NN probability is computed applying softmax to the distance 

between query and key vectors.

𝑝𝑘NN 𝑦𝑡 𝒙, 𝒚<𝑡 ∝ ෍

𝑖=1

𝑘

𝟙𝑦𝑡=𝑣𝑖 exp
− 𝒌𝑖 − 𝑓 𝒙, 𝒚<𝑡 2

2

𝜏

◼ Finally, 𝑘NN probability and NMT probability are linearly interpolated.

𝑃 𝑦𝑡 𝒙, 𝒚<𝑡 = 𝜆 𝑝𝑘NN 𝑦𝑡 𝒙, 𝒚<𝑡 + 1 − 𝜆  𝑝MT(𝑦𝑡|𝒙, 𝒚<𝑡)



Product Quantization (PQ) (Jégou+, 2011) 10

Compress key vectors using a vector quantization approach

◼ Datastore size: 32-bit × 1024-dim ×  1e+9 tokens ≈ 3.7 TiB

◼ PQ: Split a 𝐷-dim vector into 𝑀 sub-vectors and quantize in each sub-space

⚫ It can achieve lower approximation error than direct 𝐷-dim VQ

⚫ 8-bit (uint8) × 64 (if 𝑀 = 64) × 1e+9 tokens ≈ 59.6 GiB

Stored by PQ

Product Quantization for Nearest Neighbor Search (Jégou+, 2011)



Preliminary Experiments: 𝒌NN-MT on Medical Domain (De-En) 11

improves 6.1 BLEU w/o additional training

222 times slower than Base MT

Prior work

◼ Group n-grams and retrieve them at a time 

(4x faster) (Martins+, EMNLP2022) 

◼ Search for each source token and map to 

its corresponding target token using word 

alignment (10x faster) (Meng+, ACL 

Findings2022)

⚫ It is still 5% of speed of the base MT.

Model ↑BLEU ↑tok/s

Base MT 42.1 4392.1

𝑘NN-MT 48.2
(+6.1)

19.8
(×1/222)

Parameter Value

Data Test set 2,000 sentences

Datastore Various domain corpora 

31M sentence pairs 

896M tokens

Model Base MT Transformer big trained 

   W  ’19   -En

Interpolation 𝜆 = 0.5

Top-𝑘 𝑘 = 16

Evaluation Quality ↑sacreBLEU (%)

Speed ↑Tokens per second 

(tok/s)

Chunk-based Nearest Neighbor Machine Translation (Martins+, EMNLP2022)

Fast Nearest Neighbor Machine Translation (Meng+, ACL Findings2022)



Research Objective 12

We aim to improve the decoding speed of 𝒌NN-MT

◼ Proposed model: Subset 𝑘NN-MT

⚫ Reduce the 𝑘NN search space by 

searching for the neighbor sentences 

of the input sentence

⚫ Use a distance look-up table for 

efficient distance computation

▶ Existing billion-scale 𝑘NN search 

algorithms are designed for only full set 

search. (Matsui+, ACMMM2018)

▶ Subset 𝑘NN-MT employs the distance 

computation method which can used 

for subset search.

Conventional model Our model

Reconfigurable Inverted Index (Matsui+, ACMMM2018)
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Sentence Datastore Construction 14

◼ The sentence datastore 𝒮 links 

source sentence vectors to its 

corresponding target tokens from 

the 𝑘NN-MT datastore ℳ.

◼ Key ∈ ℝ𝐷′
: 𝐷′-dimensional vector 

of the source sentence

◼ Value: target tokens and their key—

value pairs from the datastore ℳ.

; 𝒮

ℎ 𝒙 ∈ ℝ𝐷′

Parallel text; 𝒟

Value
𝑦𝑡 ∈ 𝒱𝑌

Key
𝑓 𝒙, 𝒚<𝑡 ∈ ℝ𝐷



Generation 15

1. Retrieve the 𝑛-nearest-neighbor sentences of the input sentence 𝒙 

from the sentence datastore 𝒮

▶ The retrieved target token representations ෢ℳ are a subset of the datastore ℳ.

2. Use the subset datastore ෢ℳ at each timestep using 𝑘NN-MT
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Research Objective 16

We aim to improve the decoding speed of 𝒌NN-MT

◼ Proposed model: Subset 𝑘NN-MT

⚫ Reduce the 𝑘NN search space by 

searching for the neighbor sentences 

of the input sentence

⚫ Use a distance look-up table for 

efficient distance computation

▶ Existing billion-scale 𝑘NN search 

algorithms are designed for only full set 

search. (Matsui+, ACMMM2018)

▶ Subset 𝑘NN-MT employs the distance 

computation method which can used 

for subset search.

Conventional model Our model

Reconfigurable Inverted Index (Matsui+, ACMMM2018)



Asymmetric Distance Computation (ADC) (Jégou+, 2011) 17
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Product Quantization for Nearest Neighbor Search (Jégou+, 2011)

1. Compute distances between a 

query and each code vector in the 

codebook

2. Look up distances of each 

quantized key vectors from the 

pre-computed distance table

3. Calculate the sum of distances 

per subspace



Experiments: Domain Adaptation De-En 18

Parameter Value

Data General domain W  ’19   -En: 29M

Target domains ⚫ IT: 185K

⚫ Koran: 15K

⚫ Law: 451K

⚫ Medical: 210K

⚫ Subtitles: 443K

Test set 2,000 sentences for each

domain

Datastore 31M sentence pairs

896M tokens

Model Weight for 𝑝𝑘NN 𝜆 = 0.5

Top-𝑘 𝑘 = 16

neighboring 

sentences

𝑛 =  56



Results: Domain Adaptation in De-En 19

IT Koran Law Medical Subtitles

Model BLEU tok/s BLEU tok/s BLEU tok/s BLEU tok/s BLEU tok/s

Base MT 38.7 4433.2 17.1 5295.0 46.1 4294.0 42.1 4392.1 29.4 6310.5

𝑘NN-MT 41.0 22.3 19.5 19.3 52.6 18.6 48.2 19.8 29.6 30.3

Subset 𝒌NN-MT

ℎ: LaBSE 41.9 2362.2 20.1 2551.3 53.6 2258.0 49.8 2328.3 29.9 3058.4

ℎ: AvgEnc 41.9 2197.8 19.9 2318.4 53.2 1878.8 49.2 2059.9 30.0 3113.0

ℎ: TF-IDF 40.0 2289.0 19.3 2489.5 51.4 2264.3 47.5 2326.6 29.3 2574.4

ℎ: BM25 40.0 1582.4 19.1 2089.5 50.8 1946.3 47.4 1835.6 29.4 1567.7

◼ Compared with 𝑘NN-MT,

⚫ Speed: Roughly 100 times faster (up to 132.2 times)

⚫ Quality: Improved about 1 BLEU% on all domains (up to 1.6%)

▶ The noise was reduced by limiting the search space to the neighboring sentences.



Summary 20

Subset 𝒌NN-MT improved the decoding speed of 𝒌NN-MT

◼ Proposed methods

⚫ Online datastore reduction using similar sentence search

⚫ Efficient distance computation using a distance look-up table

◼ From the experiments, subset 𝑘NN-MT achieved

⚫ a speed-up of up to 132.2 times

⚫ an improvement in BLEU of up to 1.6%

compared with 𝑘NN-MT.

◼ Future work

⚫ Apply our method to other generation tasks like text summarization.



Detector-Corrector:
Edit-Based Automatic Post-Editing Model 
for Human Post-Editing

Accepted at EAMT2024



Challenges in Neural Machine Translation 22

◼ NMT generates fluent translations; however:

⚫ NMT sometimes make errors, especially in the out-of-domains.

▶ e.g., train: web corpus, test: medical text

⚫ Post-editing (PE) is still crucial in fields where mistakes cannot be allowed 

like medical domain.

◼ Tasks

1. Adapt NMT trained from general corpora to various domains efficiently

2. Assist post-editing to reduce the workload of human post-editors



Background | Post-Editing (PE) 23

Task 2: Reduce the workload of human post-editors

⚫ Professional translators:

▶ “ v          h         N  ,    h     v               0—30% 

    h  w                                               h.”

▶ They take time to read the source and MT texts and look for 

mistranslations and omissions.

◼ How can we reduce the working time of PE?

⚫ Detect and present erroneous spans

⚫ Detect and present omitted spans in a source sentence

etc.

                      

                

  

              

        
         

        
      

      
       



FELIX (Mallinson+, EMNLP Findings 2020) 24

◼ The model predicts edit operation tags 

instead of output words

⚫ This model improved human interpretability by 

showing the editing process.

◼ FELIX is not designed for post-editing

⚫ It cannot predict untranslated word spans.

⚫ It cannot insert long spans.

Edit model for monolingual text generation tasks

FELIX: Flexible Text Editing Through Tagging and Insertion (Mallinson+, EMNLP Findings 2020)



Research Objective 25

Proposed model: Detector-Corrector

◼ Detector

⚫ Predict edit operations

▶ annotate erroneous spans

▶ reorder MT tokens

◼ Corrector

⚫ Correct words within erroneous spans

Improve post-editing efficiency using edit-based approach

                                  

                                      

                                    

                        

                                

                     

   



Design of Edit Operations for Post-Editing 26

◼ Translation Edit Rate (TER)

⚫ Evaluation metric of translation quality

⚫ Number of edits required to transform an MT sentence to the reference translation

⚫ How to calculate TER

1. Shift: Reorder the MT sentence to minimize the edit distance from the reference

2. Edit: Compute the edit distance between the shifted MT sentence and reference

▶ This algorithm can be regarded as representing the edit operations of PE.



Detector: Tagging 27

Three types of tags are predicted by 

binary classification

◼ MT-tag: which tokens are errors

⚫ The gold tags are created from TER edits: 

deletion and replacement

◼ MT-gap: the word boundaries where 

the words are inserted. 

⚫ The gold tags are created from TER edits: 

insertion

◼ SRC-tag: which tokens are 

untranslated

⚫ The gold tags are created from word 

alignment (Dou and Neubig, EACL 2021)

     

                

       

       

 
  

  
 
 
 

 
 
 
 
 

  
  
 
 

  
 

 
  
 

 
  
 

 
  
 

 
  
 
  

 
  
 

 
  
 

 
 
 
  

 
 
 
 

 
  
 
 

 
  
 
  

          

     

 
  

 

 
  
 
 

 
  
 

 
  
 
  

 
  
 

 
  
 

             

      

                 

Word Alignment by Fine-tuning Embeddings on Parallel Corpora (Dou and Neubig, EACL 2021)



Detector: Reordering 28

◼ The pointer network stacked on the 

decoder selects the next token from 

the MT sentence

◼ The gold order is obtained from TER 

shift alignment      

                

       

       

 
  

  
 
 
 

 
 
 
 
 

  
  
 
 

  
 

 
  
 

 
  
 

 
  
 

 
  
 
  

 
  
 

 
  
 

 
 
 
  

 
 
 
 

 
  
 
 

 
  
 
  

          

     

 
  

 

 
  
 
 

 
  
 

 
  
 
  

 
  
 

 
  
 

             

      

                 



Corrector: Predict Words within Erroneous Spans 29

◼ Encoder receives the annotated MT sentence

⚫ bad span: <bad> A B </bad>

⚫ insertion span: <ins> </ins>

◼ Decoder generates words within tagged spans

Correct the erroneous spans by seq2seq corrector

     

       

 
  

 
 
 
 
 

  
 
 
 

 
 
 
 
 

 
  
 
 
 

  
  
 
 

  
 

 
  
 

 
  
 

 
  
  

 
  
 
 

 
 
 
  

 
 
 
 

 
  
 
 

 
  
 
  

 
 
 
 
 

 
  
 

 
  
 
 
 

 
  
  

 
  
 
  

 
  
 

 
 
 
 
 

 
 
 
 

 
  
 
 
 

 
  
  

 
 
 
  

 
  
 
  

 
  
 

 
  

 
 
 
 
 

 
 
 
 

 
  
 
 
 

 
  
  

 
 
 
  

 
  
 
 

 
  
 
  

 
  
 
 

               

          

           



Experimental Setup 30

◼  v               W  ’ 0 A                           -De and En-Zh

◼ Training data (2,140,000 sentences)

⚫ W  ’ 0 A                 (x  0   -sampling)

⚫ Additional data: 2M sentences

▶ C             h                    h  W  ’ 0   w                   

▶ We created triplets from the parallel data by generating MT sentences using the NMT 

      wh  h                                                 h  W  ’ 0 A        

◼ Baseline models

⚫ Do nothing (MT): The outputs of the MT model

⚫ Seq2seq: Black-box Transformer model

⚫ LevT (Gu+, NeurIPS 2019) : Baseline model for the edit-based model

Levenshtein Transformer (Gu+, NeurIPS 2019)



Experimental Setup: Model 31

Setting Seq2Seq Detector Corrector

Architecture XLM-R (large) + 
6L Transformer Decoder

XLM-R (large) + 
4L Transformer Decoder

XLM-R (large) + 
6L Transformer Decoder

Learning rate 1e-4 3e-5 1e-4

Dropout 0.1 0.1 0.1

Optimizer Adam
(𝛽1 = 0. , 𝛽2 = 0.  )

Adam
(𝛽1 = 0. , 𝛽2 = 0.  )

Adam
(𝛽1 = 0. , 𝛽2 = 0.  )

Batch size 24,000 tokens 6,000 tokens 24,000 tokens

LR scheduler inverse square root inverse square root inverse square root

Warmup steps 4,000 4,000 4,000

Training steps 60,000 40,000 60,000



Main Results: WMT’20 APE task 32

◼ Detector-Corrector achieved the best TER scores in both En-De and En-Zh.

En-De En-Zh

Model ↓TER ↑BLEU ↑COMET ↓TER ↑BLEU ↑COMET

do nothing (MT) 31.3 50.2 77.1 58.3 24.3 86.3

Seq2Seq 28.4 53.3 77.7 56.7 26.0 89.4

LevT (Gu+, NeurIPS2019) 31.9 49.4 75.6 59.3 23.6 86.0

Detector-Corrector 27.7 53.6 79.6 56.0 26.1 89.2

Levenshtein Transformer (Gu+, NeurIPS 2019)



Case Study 33

Source Georgia Lee , 89 , Australian jazz and blues singer .

MT 89 岁 的 佐治亚州 李 , 澳大利亚 爵士乐 和 布鲁斯 歌手 .

Seq2Seq PE 佐治亚 · 李 ( George Lee ) , 89 岁 , 澳大利亚 爵士乐 和 布鲁斯 歌手 。

Reference 乔治亚 · 李 ( Georgia Lee ) , 89 岁 , 澳大利亚 爵士 和 蓝调 歌手 。

PE (1st)

Reordered 的 佐治亚州 李 89 岁 , 澳大利亚 爵士乐 和 布鲁斯 歌手 .

Detector 的 佐治亚州 李 [INS] 89 岁 , 澳大利亚 爵士乐 和 布鲁斯 歌手 .

Corrector ∅ · , ∅ 蓝调。

Sysout 佐治亚 · 李 , 89 岁 , 澳大利亚 爵士 和 蓝调 歌手 。

PE (2nd)

Detector 佐治亚 · 李 [INS] , 89 岁 , 澳大利亚 爵士 和 蓝调 歌手 。

Corrector ( George Lee )

Sysout 佐治亚 · 李 ( George Lee ) , 89 岁 , 澳大利亚 爵士 和 蓝调 歌手 。

◼ Our detector-corrector presents the edit process

◼ The first PE corrected the translation a lot, while the second PE 

made minor corrections



Summary 34

Detector-corrector provides the editing process in post-editing

◼ For human post-editors, detector-corrector explains:

⚫ mistranslation spans

⚫ omitted spans

etc.

◼ Future work

⚫ Human evaluation: Which is easier to post-edit, the MT outputs or our 

model outputs?



Conclusion



Summary 36

1. Adapt NMT trained from general corpora to various domains efficiently

➢Subset 𝑘NN-MT improved translation quality for domain adaptation tasks with 

faster translation speed compared to the original 𝑘NN-MT.

2. Reduce the workload of human post-editors

➢Detector-corrector presented erroneous spans and untranslated spans, which are 

needed by post-editors, without degradation of translation quality compared to 

the black-box seq2seq model.



Limitations: Performance of Erroneous Span Detection 37

◼ Performance of error detection of detector--corrector is not enough

⚫ Especially, the MCC and F1-BAD scores in the target side tagging are about 50% 

⚫ We would like to investigate more effective methods of pseudo-data creation

▶ In this dissertation, we found that the data augmentation significantly improves the 

detection performance.

◼ The error correction might be improved by other approaches

⚫ To make the model more robust, we should try to train an end-to-end detector-

corrector model, where the detector and corrector are connected as a single 

model.



Future Directions 38

◼ Introduce proposed methods to actual translation scene

⚫ Evaluate how much the workload of human translators is reduced

◼ Apply proposed methods to large language models

⚫ Subset 𝑘NN-MT: It is necessary to create a sentence datastore from monolingual data.

⚫ Detector-Corrector: It is necessary to represent tagging and reordering using generation 

models.

▶ These could be realized by using constrained decoding.



Appendices



Case Study: Medical Domain 40

◼ Subset 𝑘NN-              h                      “Co-administration”.

Source Eine gemeinsame Anwendung von Nifedipin und Rifampicin ist daher kontraindiziert.

Reference Co-administration of nifedipine with rifampicin is therefore contra-indicated.

Base MT A joint use of nifedipine and rifampicin is therefore contraindicated.

𝒌NN-MT A joint use of nifedipine and rifampicin is therefore contraindicated.

Subset 
𝒌NN-MT
(𝒔: LaBSE)

Co-administration of nifedipine and rifampicin is therefore contraindicated.



Case Study: Retrieved Subset 41

◼ “Co-administration” is included in the subset.

⚫ The noise was reduced by limiting the search space to the neighboring 

sentences.

Input Eine gemeinsame Anwendung von Nifedipin und Rifampicin ist daher kontraindiziert.

Src-1 Die gemeinsame Anwendung von Ciprofloxacin und Tizanidin ist kontraindiziert.

Src-2 Rifampicin und Nilotinib sollten nicht gleichzeitig angewendet werden.

Src-3 Die gleichzeitige Anwendung von Ribavirin und Didanosin wird nicht empfohlen.

Tgt-1 Co-administration of ciprofloxacin and tizanidine is contra-indicated.

Tgt-2 Rifampicin and nilotinib should not be used concomitantly.

Tgt-3 Co-administration of ribavirin and didanosine is not recommended.



Experiments: WMT’19 De-En 42

◼ Setup

⚫ Subset size: 𝑛 = 51 

⚫ Batch size: 1 sentence (B1) / 12,000 tokens (B∞)

⚫ Sentence encoder; 𝑠

▶ LaBSE (Feng+, ACL2022) : Pretrained multilingual 

sentence encoder model

▶ AvgEnc: Average pooled NMT encoder hidden 

vectors

▶ TF-IDF/BM25 weighted vectors

◼ Results

⚫ Speed: More than 100 times faster than 𝑘NN-MT

⚫ Quality: Only -0.2 to 0.0 BLEU% degradation

↑tok/s

Model ↑BLEU B1 B∞

Base MT 39.2 129.14 6375.2

𝑘NN-MT 40.1 2.5 19.6

Chunk 𝑘NN-MT
(Martins+, 2022)

39.5 22.3 74.6

Fast 𝑘NN-MT
(Meng+, 2022)

40.3 28.1 286.9

Subset 𝒌NN-MT (ours)

s: LaBSE 40.1 118.4 2191.4

s: AvgEnc 39.9 97.3 1816.8

𝑠: TF-IDF 40.0 113.0 2199.1

𝑠: BM25 40.0 108.4 1903.9

Language-agnostic BERT Sentence Embedding (Feng+, ACL2022)

Chunk-Based Nearest Neighbor Machine Translation (Martins+, EMNLP2022)

Fast Nearest Neighbor Machine Translation (Meng+, Findings of ACL2022)



Data Augmentation for Detector 43

Motivation: Improving the tagging accuracy will lead to improved translation 

quality because the detector-corrector is trained to correct only erroneous spans 

detected by the detector.

⚫ Create synthetic data from target sentences of the parallel data

I really like booksTargetSource   本 とても  です

Example:



Data Augmentation for Detector 44

Motivation: Improving the tagging accuracy will lead to improved translation 

quality because the detector-corrector is trained to correct only erroneous spans 

detected by the detector.

⚫ Create synthetic data from target sentences of the parallel data

I really like booksTargetSource   本 とても  です

Example:

Pseudo MT I like an book



Data Augmentation for Corrector 45

Motivation: The performance of the corrector might 

suffer from the limited coverage of the vocabulary in 

the training data when compared with a seq2seq 

model.

⚫ MT training: SRC + <ins> </ins> → <ins> TGT </ins>

⚫ PE training: SRC + <bad> MT </bad> → <bad> TGT </bad>

     

       

 
  

 
 
 
 
 

  
 
 
 

 
 
 
 
 

 
  
 
 
 

  
  
 
 

  
 

 
  
 

 
  
 

 
  
  

 
  
 
 

 
 
 
  

 
 
 
 

 
  
 
 

 
  
 
  

 
 
 
 
 

 
  
 

 
  
 
 
 

 
  
  

 
  
 
  

 
  
 

 
 
 
 
 

 
 
 
 

 
  
 
 
 

 
  
  

 
 
 
  

 
  
 
  

 
  
 

 
  

 
 
 
 
 

 
 
 
 

 
  
 
 
 

 
  
  

 
 
 
  

 
  
 
 

 
  
 
  

 
  
 
 

               

          

           



Lightweight Iterative Refinement 46

◼ Iterative refinement

⚫ It further corrects the corrected sentence, 

iteratively.

◼ Lightweight iterative refinement

Motivation: Detector performs tagging non-

autoregressively, so a single inference may 

not generate a consistent correction.

⚫ full-iter: Tagging + Reordering → Correcting

⚫ light-iter: Tagging → Correcting

▶ Reordering is only performed in the first 

iteration.

     

                

       

       

 
  

  
 
 
 

 
 
 
 
 

  
  
 
 

  
 

 
  
 

 
  
 

 
  
 

 
  
 
  

 
  
 

 
  
 

 
 
 
  

 
 
 
 

 
  
 
 

 
  
 
  

          

     

 
  

 

 
  
 
 

 
  
 

 
  
 
  

 
  
 

 
  
 

             

      

                 



Results of Iterative Refinement

◼ TER scores of iterative refinement

⚫ The second inference (k=2) significantly improved TER 

scores from the first inference (k=1).

◼ Inference times of full-iter and light-iter

⚫ Light-iter infers faster than full-iter without performance 

degradation.

47



Word-level Quality Estimation Performance of Detector 48

◼ Word-level QE performance of the detector can be improved by using 

the synthetic data

◼ The main results and this results show that using a detector with more 

accurate QE performance improves the correction performance.

Target Source

Model MCC F1-OK F1-BAD MCC F1-OK F1-BAD

Detector
(w/o synthetic data)

0.453 0.935 0.510 0.781 0.985 0.793

Detector
(w/ synthetic data)

0.470 0.938 0.522 0.789 0.985 0.802



Main Results: WMT’20 APE task 49

◼ Detector-Corrector achieved the best TER scores in both En-De and En-Zh.

◼ Lightweight iterative refinement and two data augmentation approaches 

(DAug) are effective.

En-De En-Zh

Model ↓TER ↑BLEU ↑COMET ↓TER ↑BLEU ↑COMET

do nothing (MT) 31.3 50.2 77.1 58.3 24.3 86.3

Seq2Seq 28.4 53.3 77.7 56.7 26.0 89.4

LevT (Gu+, NeurIPS2019) 31.9 49.4 75.6 59.3 23.6 86.0

Detector-Corrector 27.7 53.6 79.6 56.0 26.1 89.2

- light-iter 28.9 52.1 77.7 56.6 25.5 88.0

-- DAug for corrector 30.2 50.1 77.6 57.0 24.9 88.6

--- DAug for detector 31.2 49.0 77.1 61.2 22.7 86.7

Levenshtein Transformer (Gu+, NeurIPS 2019)



Correction Performance of Oracle Tagged Sentences 50

◼ Experiment

⚫ Evaluate the correction performance of the 

corrector when given oracle edit tags

▶ Upper bound of the corrector performance

⚫ The oracle edit calculated from TER between 

the MT sentence and reference

◼ Result

⚫ Given the oracle tags, the correction 

performance improved by -17.89% for TER 

and by +26.01% for BLEU.

⚫ The corrector has been successfully trained.

⚫ A further improvement in post-editing 

performance can be achieved by improving 

the detector model.

Model ↓TER ↑BLEU

Baseline (MT) 31.33 50.21

Detector-Corrector 31.75 48.68

+ Oracle tagging 13.86
(-17.89)

74.49
(+26.01)
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