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Machine Translation (MT) and Post-Editing (PE)

m Typical translation process rarallel data; D

general target
domains

e MT: generates translation drafts dgoma‘”__ ) [ _____ —— ]
e PE: refines the translations by human translators % ——> [Inference

MT output; y*

m Various approaches of MT [ )
e Example-based MT (EBMT): refers to translation \ s /
dh
[ J

examples at run time (Nagao, 1984)

e Statistical MT (SMT): learns statistical information
from parallel data (Brown+, CL1990) Franslation: y

A Framework of a Mechanical Translation Between Japanese and English by Analogy Principle (Nagao, 1984)
A Statistical Approach to Machine Translation (Brown+, CL1990)
Sequence to Sequence Learning with Neural Networks (Sutskever+, NIPS2014)



Overview of Neural Machine Translation (NMT)

m Typical NMT employs the encoder-

decoder model I like apples </s>

e Encoder projects the input tokens x = 'T‘ 'T‘ 'T‘ 'T‘
(x1, ..., X)) into its hidden vectors Encoder —> Decoder

e Decoder generates the target tokens y = o S O R ) O

(y1, -, ¥}y) from left to right, autoregressively X Fh EDASH tFE Yi<s> 1 like apples

e Each target token is generated according to its
output probabilities: p(y;|y<¢, X)

m Neural networks used for NMT models
Large language models (LLM) encodes the

e Recurrent neural network (Sutskever+, NIPS2014) input tokens through the prefix of decoder
. inputs instead of using the encoder.
e Convolutional neural network (Gehring+, ICML2017)

e Transformer (Vaswani+, NIPS2017)

Sequence to Sequence Learning with Neural Networks (Sutskever+, NIPS2014)
Convolutional Sequence to Sequence Learning (Gehring+, ICML2017)
Attention Is All You Need (Vaswani+, NIPS2017)



Challenges in Neural Machine Translation

m NMT generates fluent translations; however:

e NMT sometimes make errors, especially in the out-of-domains.
» e.g., train: web corpus, test: medical text

e Post-editing (PE) is still crucial in fields where mistakes cannot be allowed
like medical domain.
m Tasks

1. Adapt NMT trained from general corpora to various domains efficiently
2. Assist post-editing to reduce the workload of human post-editors



Subset Retrieval Nearest Neighbor
Machine Translation

Accepted at ACL2023 (main)



Background | In-domain and Out-of-domain

m In-domain: Training data and test data are same domain
e Various methods have improved translation performance

e.g.,
» Use syntactic information (Eriguchi+, ACL2017; Deguchi+, RANLP2019)
» Rerank the translation candidates (Lee+, ACL2021; Fernandes+, NAACL2022)

» Employ the curriculum learning approaches (Bengio+, NIPS2015)

m Out-of-domain: Training data and test data are different domain

e Domain adaptation is a challenge in machine translation

» —2021: The Workshop on Machine Translation (WMT), an international competition for machine
translation, held the news translation task.

» 2022—present: The task was replaced with the mixed-domain translation task.

Learning to Parse and Translate Improves Neural Machine Translation (Eriguchi+, ACL2017)
Dependency-Based Self-Attention for Transformer NMT (Deguchi+, RANLP2018)

Discriminative Reranking for Neural Machine Translation (Lee+, ACL2021)

Quality-aware Decoding for Neural Machine Translation (Fernandes+, NAACL2022)

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks (Bengio+, NIPS2015)



Previous Work | Domain Adaptation

m Train NMT using domain data

e It needs additional training costs for each domain.

m Retrieve translation examples (zhang+, NAACL2018; Gu+, AAAI2018; Khandelwal+, ICLR2021)
e Incorporate the example-based approach into NMT

e No need to update models for each domain.
» KNN-MT (Khandelwal+, ICLR2021) achieved SOTA performance in the domain adaptation task.

Guiding Neural Machine Translation with Retrieved Translation Pieces (Zhang+, NAACL2018)
Search Engine Guided Neural Machine Translation (Gu+, AAAI2018)
Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021)



KNN-MT (knhandewal+, 1IcLr2021) ¢ Datastore Construction

m Datastore; M C X Vy

o : D-dimensional intermediate
representation of a target token

» Teacher-forcing a parallel sentence pair (x, y)
to a trained NMT model

» Intermediate representation of the final
decoder layer

e Value € V,: Ground truth target token
» Vy: Vocabulary of the target language Y

m Datastore size; |M |

e The number of all target tokens in a parallel text
e e.g., WMT’19 De-En: 29.5M sent., 862.6M tok.

Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021)

Datastore
. Value o
e ¢ g &
| e - = & v
. Key
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Encoder —>» Decoder

rfrtrttr 1111

cFh lEF DA HIEFE vy <s>1 like apples



KNN-MT (handewal+, IcLr2021) ¢ Generation

m First, the model retrieves k nearest neighbor tokens from the
datastore in each timestep.

m Then, kNN probability is computed applying softmax to the distance
between query and key vectors.

—llk; — f (6, y<)lI3
T

k
pkNN(Ytlx' y<t) X z ﬂyt=vi exp

=1

kNN € {(k; € R?,v; € Vy)}*, Applying softmax to the similarity

m Finally, kNN probability and NMT probability are linearly interpolated.
Pelx,y<t) = A0innelX, y<e) + (1 = ) pmr (Ve lx, ¥ <¢)

Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021)



Product Quantization (PQ) (Jégou+, 2011)

Compress key vectors using a vector quantization approach
m Datastore size: 32-bit X 1024-dim X l1e+9 tokens = 3.7 TiB

m PQ: Split a D-dim vector into M sub-vectors and quantize in each sub-space

e It can achieve lower approximation error than direct D-dim VQ
e 8-bit (uint8) X 64 (if M = 64) X 1e+9 tokens = 59.6 GiB

Datastore
Product Quantization: Memory efficient .- T R
e “ O QL »n
Vector;x Codebook Value L é % v
A 1034 } - [(I)Dlrlg {-BD;,Ez' |2:g§6. PQ-code; X Stored by PQ Key I I
0.22 0.98l1lo.271} 008! T~ 5 | :
0.68 ID:1  ID:2 i"i ID: 256 ID: 2
- 0.35 10.99 .
D|3oal} ={i e i0:123 | | M Tt 1
0.03 ﬂ 1D:87 Encoder —> Decoder
v L0.71- I

L ——— Tttt 1ttt

o lEF DA HFE <s> I like apples

Product Quantization for Nearest Neighbor Search (Jegou+, 2011)



Preliminary Experiments: kNN-MT on Medical Domain (De-En)

Model * BLEU 1 tok/s Parameter Value
Base MT 421 4392 1 Data Test set 2,000 sentences
Datastore Various domain corpora
eNN-MT a8.2 178 31M sentence pairs
(+6.1) (X1/222) g
| - 896M tokens
© improves 6.1 BLEU w/o additional training Model Base MT Transformer big trained
© 222 times slower than Base MT on WMT’19 De-En
Prior work Interpolation 1 =0.5
m Group n-grams and retrieve them at a time Top-k k=16
(4x faster) (Martins+, EMNLP2022) Evaluation Quality 1T sacreBLEU (%)
m Search for each source token and map to Speed 1 Tokens per second
its corresponding target token using word (tok/s)

alignment (10x faster) (Meng+, ACL

Findings2022) Chunk-based Nearest Neighbor Machine Translation (Martins+, EMNLP2022)
o It is still 5% of speed of the base MT.  Fast Nearest Neighbor Machine Translation (Meng+, ACL Findings2022)



Research Objective

We aim to improve the decoding speed of kKNN-MT

m Proposed model: Subset kNN-MT

e Reduce the kNN search space by
searching for the neighbor sentences
of the input sentence

e Use a distance look-up table for
efficient distance computation
» Existing billion-scale kNN search

algorithms are designed for only full set
search. (Matsui+, ACMMM2018)

» Subset kNN-MT employs the distance
computation method which can used
for subset search.

Reconfigurable Inverted Index (Matsui+, ACMMMZ2018)
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Sentence Datastore Construction

Sentence Datastore; S

m The sentence datastore S links Key value : T
source sentence vectors to its (o) € R’ Ve € Vy
corresponding target tokens from
the kNN-MT datastore M.

I

like
apples :
</[s> .

, Key
: f(x1y<t) € ]RD

0.0
.OO

m Key € R?': D’-dimensional vector
of the source sentence

—>{ {000
—p000

,
—t— OO0 @ ®

— ‘r’
Sentence

Encoder Encoder —> Decoder

= Value: target tokens and their key— T_ t1 11t 1111

value pairs from the datastore M. & DAC i EFE | [<s> 1 like apples |

Parallel text; D




Generation

1. Retrieve the n-nearest-neighbor sentences of the input sentence x
from the sentence datastore §

» The retrieved target token representations M are a subset of the datastore M.

2. Use the subset datastore M at each timestep using kNN-MT

Input; x
Sentence
Encoder
Query |@@OO
‘l’ Sentence datastore; S
(. w— e,
Key  ii Full set datastore; M \
H ( N\
oxb iyt oy ) Subset datastore; M < M
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Research Objective

We aim to improve the decoding speed of kKNN-MT

m Proposed model: Subset kNN-MT

e Reduce the kNN search space by
searching for the neighbor sentences
of the input sentence

e Use a distance look-up table for
efficient distance computation
» Existing billion-scale kNN search

algorithms are designed for only full set
search. (Matsui+, ACMMM2018)

» Subset kNN-MT employs the distance
computation method which can used
for subset search.

Reconfigurable Inverted Index (Matsui+, ACMMMZ2018)
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Asymmetric Distance Computation (ADC) (3¢gou+, 2011)

_ query; q € R” codebook
1. Compute distances between a = D1 ID:2 1D: 256
query and each code vector in the b | |os8 ooal loar) " loos
codebook e

distance table; d,,(q,1)

2. LOOk up distances Of eaCh ................. .......

ID: 1 EID:Z | 1D: 256
quantized key vectors from the 0622 10.003; - 0496 .
pre-computed distance table . -
ID: 256 ID: 2 0.496 0.003 d(q ki) d(q ky)
3. Calculate the sum of distances ' - - -
M ID: 67 ... | 1D:234 » 0.384 | ... | 0.213 2.081 | ... | 0.383
per su bs pace ID: 92 ID: 5 » 1.201 0.167 M ]
keys; K € {1,2,...,256}M looked up distances z dn(q™ ki)

Product Quantization for Nearest Neighbor Search (Jegou+, 2011)



Experiments: Domain Adaptation De-En

Parameter

Data

Model

General domain

Target domains

Test set

Datastore

Weight for pinn
Top-k
neighboring
sentences

Value
WMT’19 De-En: 29M

e IT:185K

e Koran: 15K

e Law: 451K

e Medical: 210K
e Subtitles: 443K

2,000 sentences for each
domain

31M sentence pairs
896M tokens

A=0.5
k=16
n = 256



Results: Domain Adaptation in De-En

IT Koran Law Medical Subtitles
Model BLEU tok/s BLEU tok/s BLEU tok/s BLEU tok/s BLEU tok/s
Base MT 38.7 4433.2 171 5295.0 46.1 4294.0 421 43921 29.4 6310.5
kNN-MT 41.0 22.3 19,5 19.3 52.6 18.6  48.2 19.8 29.6 30.3

Subset kNN-MT

h: LaBSE 41.9 2362.2 20.1 2551.3 53.6 2258.0 49.8 23283 29.9 30584
h: AvgEnc 41.9 2197.8 199 23184 53.2 1878.8 49.2 2059.9 30.0 3113.0
h: TF-IDF 40.0 2289.0 19.3 2489.5 51.4 22643 47,5 2326.6 29.3 2574.4
h: BM25 40.0 1582.4 19.1 2089.5 50.8 1946.3 47.4 1835.6 29.4 1567.7

m Compared with kNN-MT,
e Speed: Roughly 100 times faster (up to 132.2 times)
e Quality: Improved about 1 BLEU% on all domains (up to 1.6%)

» The noise was reduced by limiting the search space to the neighboring sentences.



Summary

Subset kNN-MT improved the decoding speed of kNN-MT

m Proposed methods
e Online datastore reduction using similar sentence search
e Efficient distance computation using a distance look-up table

m From the experiments, subset kNN-MT achieved
e aspeed-upof upto132.2 times
e an improvement in BLEU of upt0 1.6%
compared with kNN-MT.

m Future work

e Apply our method to other generation tasks like text summarization.



Detector-Corrector:
Edit-Based Automatic Post-Editing Model
for Human Post-Editing

Accepted at EAMT2024



Challenges in Neural Machine Translation

m NMT generates fluent translations; however:

e NMT sometimes make errors, especially in the out-of-domains.
» e.g., train: web corpus, test: medical text

e Post-editing (PE) is still crucial in fields where mistakes cannot be allowed
like medical domain.
m Tasks

1. Adapt NMT trained from general corpora to various domains efficiently
2. Assist post-editing to reduce the workload of human post-editors



Background | Post-Editing (PE)

Task 2: Reduce the workload of human post-editors

e Professional translators:

Parallel data; D
» “Even using the latest NMT, PE has saved only about 20—30% arate e

i ) ) ’ general target
of the working time compared to translating from scratch. domain  domains
_ 8 ----- > Training
» They take time to read the source and MT texts and look for % [ — Inference]

mistranslations and omissions.

Input X MT

m How can we reduce the working time of PE?

e Detect and present erroneous spans \

e Detect and present omitted spans in a source sentence

MT output y*

J—>
(

Translation; y

R 'o

etc.



FELIX (Mallinson+, EMNLP Findings 2020)

Edit model for monolingual text generation tasks

m The model predicts edit operation tags The very big old cat
Instead of output words © DR

e This model improved human interpretability by
showing the editing process. f

insertion

e ve;ry big [REPL] loud [/REPL] MASK cat
m FELIX Is not designed for post-editing
e It cannot predict untranslated word spans.

. KEEP KEEPNSKEEP DEL  KEEP
e It cannot insert long spans. : | : :

tagging

The bzig very loud cat

FELIX: Flexible Text Editing Through Tagging and Insertion (Mallinson+, EMNLP Findings 2020)



Research Objective

Improve post-editing efficiency using edit-based approach

Proposed model: Detector-Corrector | drink beer every night
. *
Detector [ Corrector: replacing and inserting ]
e Predict edit operations t t
> annotate erroneous spans trinke ich Bier |_Idrink bier|
» reorder MT tokens I \ | I
Detector: reordering and tagging ]
m Corrector [
Co = = —

e Correct words within erroneous Spans Jeden Abend trinke ich Bier drink | bier




Design of Edit Operations for Post-Editing

m Translation Edit Rate (TER)

e Evaluation metric of translation quality
e Number of edits required to transform an MT sentence to the reference translation
e How to calculate TER

1. Shift: Reorder the MT sentence to minimize the edit distance from the reference

2. Edit: Compute the edit distance between the shifted MT sentence and reference
» This algorithm can be regarded as representing the edit operations of PE.



Detector: Tagging

Three types of tags are predicted by
binary classification

m MT-tag: which tokens are errors

e The gold tags are created from TER edits:

deletion and replacement

m MT-gap: the word boundaries where
the words are inserted.

e The gold tags are created from TER edits:

Insertion

m SRC-tag: which tokens are
untranslated

e The gold tags are created from word

Word Alignment by Fine-tuning Embeddings on Parallel Corpora (Dou and Neubig, EACL 2021)

Tagging

SRC-tag
1170000

ich
Bier
</s>

Jeden
Abend
trinke
</s> mp
drink

bier
</s>

0001
0010 MT-tag

Linear + Sigmoid !

XLM-R

AR BRRAER R
A\

v

0 MT-gap|

Reordering

x—

bier

drin
</s>

Pointer

1

Decoder

1 }

<S>




Detector: Reordering

m The pointer network stacked on the

decoder selects the next token from
the MT sentence

m The gold order is obtained from TER
shift alignment

Tagging Reordering
=78
SRC-tag 000 10 MT-gap =y
110000 0 010 MT-tag
Linear + Sigmoid ! Pointer
XLM-R | Decoder
L2858 h0ce Ty &5
vV O O C '~ o> 'C O ~~ v
ko) 2 = vV Vo Vv




Corrector: Predict Words within Erroneous Spans

Correct the erroneous spans by seq2seq corrector

m Encoder receives the annotated MT sentence
e bad span: <bad> A B </bad>

e insertion span: <ins> </ins>

m Decoder generates words within tagged spans

Correction

beer

<bad>
</bad>

every
night

<ins>
</ins>

Decoder

XLM-R

source sentenc

‘?‘

</s>




Experimental Setup

m Evaluation data: WMT 20 Automatic Post Editing in En-De and En-Zh

m Training data (2,140,000 sentences)
e WMT’20 APE: 7K sentences (x 20 up-sampling)
e Additional data: 2M sentences

» Created from the training data of the WMT’20 news translation tasks

» We created triplets from the parallel data by generating MT sentences using the NMT
model which is used for creating official training data in the WMT’20 APE tasks

m Baseline models
e Do nothing (MT): The outputs of the MT model
e Seq2seq: Black-box Transformer model
e LevT (Gu+, NeurlPS 2019) : Baseline model for the edit-based model

Levenshtein Transformer (Gu+, NeurlPS 2019)



Experimental Setup: Model

Setting
Architecture

Learning rate
Dropout
Optimizer

Batch size

LR scheduler
Warmup steps
Training steps

Seq2Seq

XLM-R (large) +
6L Transformer Decoder

le-4
0.1

Adam
(B, = 0.9, 8, = 0.98)
24 000 tokens

Inverse square root
4,000
60,000

Detector

XLM-R (large) +
AL Transformer Decoder

3e-5
0.1

Adam
(B, = 0.9, 3, = 0.98)
6,000 tokens

Inverse square root
4,000
40,000

Corrector

XLM-R (large) +
6L Transformer Decoder

le-4
0.1

Adam
(B, = 0.9, 8, = 0.98)
24 000 tokens

Inverse square root
4,000
60,000



Main Results: WMT’20 APE task

En-De En-Zh
Model JTER tBLEU 1tcoMET JTER 1BLEU tCOMET
do nothing (MT) 31.3 50.2 77.1 58.3 24.3 86.3
Seq2Seq 28.4 53.3 77.7 56.7 26.0 89.4
LevT (Gu+, NeurlPS2019) 31.9 49.4 75.6 59.3 23.6 86.0
Detector-Corrector 27.7 53.6 79.6 56.0 26.1 89.2

m Detector-Corrector achieved the best TER scores in both En-De and En-Zh.

Levenshtein Transformer (Gu+, NeurlPS 2019)



Case Study

Source Georgia Lee , 89, Australian jazz and blues singer .

MT 89 & 1y RN = | BRAFIL 81K f mEHT 3kF .

Seq2Seq PE 81 - Z= (George Lee ) ,89 %, BAF I B3R Fl HEHT F ,

Reference 778\l - Z= ( Georgia Lee ) , 89 % , B AFN &+ 1 BiE IHKF,
Reordered #Y &5l N == 89 % | B AN &5+5K 1 &8 IRF .

oE (159 Detector 7 &&= [INS] 89 %5 | SBAF I B+ 0 IF
Corrector © -, J .

Sysout el - 2,89 % | JBAFMI &+ A HIF IKF,
Detector  f&B1L - == [INS]|, 89 %, JBAFI &8+ 1 #F F ,
PE (2n9) Corrector ( George Lee)
Sysout 81 - Z= ( George Lee ) , 89 %, BAF I &5+ F1 IEiA IF ,

m Our detector-corrector presents the edit process

m The first PE corrected the translation a lot, while the second PE
made minor corrections



Summary

Detector-corrector provides the editing process in post-editing

m For human post-editors, detector-corrector explains:
e mistranslation spans
e omitted spans
etc.

m Future work

e Human evaluation: Which is easier to post-edit, the MT outputs or our
model outputs?



Conclusion




Summary

1. Adapt NMT trained from general corpora to various domains efficiently
» Subset kNN-MT improved translation quality for domain adaptation tasks with
faster translation speed compared to the original kNN-MT.
2. Reduce the workload of human post-editors

» Detector-corrector presented erroneous spans and untranslated spans, which are
needed by post-editors, without degradation of translation quality compared to
the black-box seq2seq model.



Limitations: Performance of Erroneous Span Detection

m Performance of error detection of detector--corrector is not enough
e Especially, the MCC and F1-BAD scores in the target side tagging are about 50%
e We would like to investigate more effective methods of pseudo-data creation

» In this dissertation, we found that the data augmentation significantly improves the
detection performance.

m The error correction might be improved by other approaches

e To make the model more robust, we should try to train an end-to-end detector-
corrector model, where the detector and corrector are connected as a single
model.



Future Directions

m Introduce proposed methods to actual translation scene

e Evaluate how much the workload of human translators is reduced

m Apply proposed methods to large language models
e Subset KNN-MT: It is necessary to create a sentence datastore from monolingual data.

e Detector-Corrector: It is necessary to represent tagging and reordering using generation
models.

» These could be realized by using constrained decoding.



Appendices




Case Study: Medical Domain

Source Eine gemeinsame Anwendung von Nifedipin und Rifampicin ist daher kontraindiziert.

Reference Co-administration of nifedipine with rifampicin is therefore contra-indicated.

Base MT A joint use of nifedipine and rifampicin is therefore contraindicated.
kKNN-MT A joint use of nifedipine and rifampicin is therefore contraindicated.
Subset

kKNN-MT Co-administration of nifedipine and rifampicin is therefore contraindicated.

(s: LaBSE)

m Subset kKNN-MT generated the medical terminology “Co-administration”.



Case St

udy: Retrieved Subset

Input Eine gemeinsame Anwendung von Nifedipin und Rifampicin ist daher kontraindiziert.

Src-1
Src-2
Src-3
Tgt-1
Tgt-2

Tgt-3

Die gemeinsame Anwendung von Ciprofloxacin und Tizanidin ist kontraindiziert.
Rifampicin und Nilotinib sollten nicht gleichzeitig angewendet werden.

Die gleichzeitige Anwendung von Ribavirin und Didanosin wird nicht empfohlen.
Co-administration of ciprofloxacin and tizanidine is contra-indicated.
Rifampicin and nilotinib should not be used concomitantly.

Co-administration of ribavirin and didanosine is not recommended.

m “Co-administration” is included in the subset.
e The noise was reduced by limiting the search space to the neighboring

sentences.



Experiments: WMT’19 De-En

m Setup

e Subset size: n = 512
e Batch size: 1 sentence (B1) / 12,000 tokens (Bo)

e Sentence encoder; s

» LaBSE (Feng+, ACL2022) : Pretrained multilingual
sentence encoder model

» AvgEnc: Average pooled NMT encoder hidden
vectors

» TF-IDF/BM25 weighted vectors

m Results
e Speed: More than 100 times faster than kNN-MT
e Quality: Only -0.2 t0 0.0 BLEU% degradation

Language-agnostic BERT Sentence Embedding (Feng+, ACL2022)
Chunk-Based Nearest Neighbor Machine Translation (Martins+, EMNLP2022)
Fast Nearest Neighbor Machine Translation (Meng+, Findings of ACL2022)

Model 1t BLEU
Base MT 39.2
kKNN-MT 40.1
Chunk KNN-MT 39.5
(Martins+, 2022)

Fast kNN-MT 40.3

(Meng+, 2022)

Subset kKNN-MT (ours)

s: LaBSE 40.1
s: AvgEnc 39.9
s: TF-IDF 40.0
s: BM25 40.0

T tok/s

Bl Boo
129.14 6375.2
2.5 19.6
22.3 74.6
28.1 286.9
118.4 2191.4
97.3 1816.8
113.0 2199.1
108.4 1903.9



Data Augmentation for Detector

Motivation: Improving the tagging accuracy will lead to improved translation
quality because the detector-corrector is trained to correct only erroneous spans

detected by the detector.
e Create synthetic data from target sentences of the parallel data

Example:
Source MMIIEMNETHIETTY | Target Ireally like books



Data Augmentation for Detector

Motivation: Improving the tagging accuracy will lead to improved translation
quality because the detector-corrector is trained to correct only erroneous spans

detected by the detector.
e Create synthetic data from target sentences of the parallel data

Example:
Source MMFENETHEIHETY Target I +eathylike books

Pseudo MT T like/an/book




Data Augmentation for Corrector

Motivation: The performance of the corrector might
suffer from

Correction
when compared with a seq2seq AEAMZER
gng.s G>)'E.E Y
model. v SV
e MT training: SRC + <ins> </ins> — <ins> TGT </ins> -)[mDecoder
e PE training: SRC + <bad> MT </bad> — <bad> TGT </bad> ANADANDE 4
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|
XLM-R
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Lightweight Iterative Refinement

m Jterative refinement

e It further corrects the corrected sentence,
iteratively.

m Lightweight iterative refinement

Motivation: Detector performs tagging non-
autoregressively, so a single inference may
not generate a consistent correction.

e full-iter: Tagging + Reordering — Correcting
e light-iter: Tagging — Correcting

» Reordering is only performed in the first
iteration.

Tagging

SRC-tag 000 10 MT-gap
110000 0 010 MT-tag

Reordering

M—

drin
bier
</s>

Pointer

1

Linear + Sigmoid —>
C O O c = X — =
hocx0OHhC o {
vV O O €'~ MmN 'C O
L O — V V Vv
—.<-l—‘

Decoder




Results of Iterative Refinement

: : . — :
m TER scores of iterative refinement 2028 \ o fulbiter
L light-iter
e The second inference (k=2) significantly improved TER ~ ~**% — g/
scores from the first inference (k=1). 2875
1 2 3 4 5
m Inference times of full-iter and light-iter ‘
e Light-iter infers faster than full-iter without performance —
. 75 - Refinement 1
degradation. Lo | fullliver P
3 50 Iight-ite: /./'
25 o~

s

1-D 1-C 2-D 2-C 3-D 3-C 4-D 4-C 5-D 5-C
Inference step



Word-level Quality Estimation Performance of Detector

Target Source
Model MCC F1-OK F1-BAD MCC F1-OK F1-BAD
Detector 0.453 0.935 0.510 0.781 0.985 0.793
(w/o synthetic data)
Detector 0.470 0.938 0.522 0.789 0.985 0.802

(w/ synthetic data)

m Word-level QE performance of the detector can be improved by using
the synthetic data

m The main results and this results show that using a detector with more
accurate QE performance improves the correction performance.



Main Results: WMT’20 APE task

En-De En-Zh
Model JTER tBLEU 1tCcOoMET JTER 1BLEU tCOMET
do nothing (MT) 31.3 50.2 77.1 58.3 24.3 86.3
Seq2Seq 28.4 53.3 77.7 56.7 26.0 89.4
LevT (Gu+, NeurlPS2019) 31.9 49.4 75.6 59.3 23.6 86.0
Detector-Corrector 27.7 53.6 79.6 56.0 26.1 89.2
- light-iter 28.9 52.1 77.7 56.6 25.5 88.0

-- DAug for corrector 30.2 50.1 77.6 57.0 24.9 88.6
--- DAug for detector 31.2 49.0 77.1 61.2 22.7 86.7

m Detector-Corrector achieved the best TER scores in both En-De and En-Zh.

m Lightweight iterative refinement and two data augmentation approaches
(DAug) are effective.

Levenshtein Transformer (Gu+, NeurlPS 2019)



Correction Performance of Oracle Tagged Sentences

m Experiment

e Evaluate the correction performance of the Model J{ TER 1 BLEU
corrector when given oracle edit tags Baseline (MT) 31.33 50.21
» Upper bound of the corrector performance
Detector-Corrector 31.75 48.68

e The oracle edit calculated from TER between

the MT sentence and reference + Oracle tagging 13.86 74.49
(-17.89) (+26.01)

m Result
e Given the oracle tags, the correction
performance improved by -17.89% for TER
and by +26.01% for BLEU.

e The corrector has been successfully trained.

e A further improvement in post-editing
performance can be achieved by improving
the detector model.
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